Prof. Dr. Norbert Weidner

Spinal Cord Injury Centre, Medical Faculty Heidelberg, Heidelberg University

Dr. Radhika Puttagunta

Spinal Cord Injury Centre, Medical Faculty Heidelberg, Heidelberg University

Prof. Dr. Frank Bradke

German Centre for Neurodegenerative Diseases (DZNE), University of Bonn

Functional and structural plasticity following spinal cord injury: contributions to chronic central neuropathic pain

The debilitating secondary consequences of neuropathic pain after spinal cord injury (SCI) lowers the quality of patient life, restricts rehabilitative efforts and currently limited options for effective treatment are available. SCI-associated sensorimotor deprivation leads to mechanical allodynia, while sensorimotor activation has the potential to alleviate this acquired hypersensitivity. This is paralleled by maladaptive plasticity in the dorsal horn below the level of SCI. In the first funding period, we showed in contused SCI mice that treadmill training - started either acutely or delayed – specifically alleviates mechanical allodynia and spatial preference, reflecting affective measures of pain. These behavioural changes correlate with reduced sprouting of nociceptive afferents from superficial lamina into laminae III/IV, where typically non-noxious stimuli are being processed. This proposal strives to ask can structure-function alterations in SCI-related neuropathic pain in the dorsal horn of the lumbar spinal cord be linked rostrally to spinal lesion sensory (spinothalamic, lemniscal) pathway damage as well as caudally to peripheral nerve alterations? Can these alterations be manipulated by sensorimotor activation or pharmacological interventions to provide therapeutic benefit? This work will be undertaken by intersectional genetics approaches in transgenic mice as well as recruitment of patients in sensorimotor activity tracking in conjunction with spinal and peripheral MRI.

We hypothesize that a spinal cord injury leads to below level peripheral changes that induce rewiring of the dorsal horn of the lumbar spinal cord resulting in mechanical allodynia. Understanding the function of these structural rearrangements and their underlying mechanism of activation is the aim of the human-rodent tandem A06.

News

  • Gender equality in science and career development

    Supporting the work of the ALBA Network

     

    Read more ...  
  • The Heidelberg Outpatient Center for Clinical Pain Research (HeiSIS)

    Congratulations to SFB 1158 Project Leader, Prof. Dr. Jonas Tesarz, on becoming the Head of a new facility in his department: The "Heidelberg Outpatient Center for Clinical Pain Research (HeiSIS)"

     

    Read more ...  
  • Dr. Frauke Nees accepts new position in Kiel

    Congratulations to Dr. Frauke Nees, one of the Consortium's PIs, on her new position as the Director of the Institute of Medical Psychology and Medical Sociology and W3 Professorship for Medical Psychology and Behavioral Neurobiology in the Medical Faculty of the Christian-Albrechts University in Kiel.

     

     
  • Carmen Ruiz de Almodovar Wins ERC Consolidator Grant

    Congratulations to SFB 1158 Project Leader, Professor Carmen Ruiz de Almodóvar, who has successfully obtained an ERC Consolidator Grant!

     

    Read more ...  
  • Bonn Researchers Identify Key Proteins for the Repair of Nerve Fibers

    Prof. Dr. Frank Bradke, and his colleagues at the German Center for Neurodegenerative Diseases (DZNE) have identified a group of proteins that help to regenerate damaged nerve cells.

    Read more ...